Responses of spinothalamic lamina I neurons to repeated brief contact heat stimulation in the cat.

نویسندگان

  • A D Craig
  • D Andrew
چکیده

It was recently shown that repeated heat stimulation, using brief contacts (<1 s) with a preheated thermode at sufficiently short interstimulus intervals (ISIs <5 s) and high temperatures (> or =51 degrees C), will elicit in humans a sensation of rapidly augmenting "second" (burning) pain with only a weak "first" (sharp) pain sensation. Most strikingly, at short intertrial intervals (ITIs >5 s) such summation will reset, or begin again at baseline. In the present experiments, the responses of nociceptive lamina I spinothalamic (STT) neurons in the lumbosacral dorsal horn of barbiturate-anesthetized cats were examined using this repeated brief contact heat paradigm. The neurons were classified as nociceptive-specific (NS, n = 8) or polymodal nociceptive (HPC, n = 8) based on their responses to quantitative thermal stimuli; all had receptive fields on the glabrous ventral hindpaw. A pneumatic piston was used to apply a thermode preheated to 34, 46, 49, 53, or 58 degrees C with a contact dwell time of approximately 0.7 s to the ventral hindpaw repeatedly (15 times) at ISIs of 2, 3, and 5 s, with 3-5 min between trials. The mean responses of the 16 nociceptive lamina I STT cells showed rapid temporal summation that was directly dependent on temperature and inversely dependent on ISI, with the greatest increases occurring between the 3rd and 10th contacts. The temporal profiles of this family of curves correspond with the psychophysical data on human sensation. Further analysis showed that this summation was due to the HPC cells, which all showed strong summation; in contrast, the NS cells showed little, if any. The HPC responses to the repeated heat stimuli lagged each contact by approximately 1 s, consistent with the strong, monosynaptic C-fiber input that is characteristic of HPC cells and also with the dependence of second pain on C-fiber nociceptors. HPC cells also displayed the reset phenomenon at short ITIs, again in correspondence with the psychophysical data. The summation and the reset displayed by HPC cells were not related to skin temperature. Thus the results presented in this study, together with those in the preceding article, demonstrate a double dissociation indicating that NS and HPC lamina I STT cells can subserve the qualitatively distinct sensations of first (sharp) and second (burning) pain, respectively. These findings support the concept that the lamina I STT projection comprises several discrete sensory channels that are integrated in the forebrain to generate distinct sensations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lamina I, but not lamina V, spinothalamic neurons exhibit responses that correspond with burning pain.

Single-unit recordings from monkey spinothalamic tract (STT) neurons reveal that the responses of polymodal nociceptive lamina I STT neurons correspond with the profile of burning pain elicited in human subjects by repeated brief-contact heat. In contrast, lamina V wide-dynamic-range (WDR) neurons show a significantly different response pattern. This finding indicates that burning pain is signa...

متن کامل

A Short Report

Single-unit recordings from monkey spinothalamic tract (STT) neurons reveal that the responses of polymodal nociceptive lamina I STT neurons correspond with the profile of burning pain elicited in human subjects by repeated brief-contact heat. In contrast, lamina V wide-dynamicrange (WDR) neurons show a significantly different response pattern. This finding indicates that burning pain is signal...

متن کامل

Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat.

Noxious mechanical stimuli that are maintained for minutes produce a continuous sensation of pain in humans that augments during the stimulus. It has recently been shown with systematic force-controlled stimuli that, while all mechanically responsive nociceptors adapt to these stimuli, the basis for such pain can be ascribed to A-fiber rather than C-fiber nociceptors, based on distinctions in t...

متن کامل

A dorsolateral spinothalamic pathway in cat.

A spinothalamic tract that courses in the dorsolateral funiculus of the spinal cord and originates almost exclusively from spinal lamina I neurons has been demonstrated in the cat by retrograde transport of horseradish peroxidase. This tract is of special interest because the course of this predominantly lamina I, contralateral projection lies outside the classical course of the spinothalamic t...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 4  شماره 

صفحات  -

تاریخ انتشار 2002